


22

Table of Contents
Introduction ...................................................................... 4

Test Methodology .............................................................. 5

Test Results ....................................................................... 8
Throughput 9

Concurrent Users 10

Data Variations 11

Catalog Size 12

Conversion Rates 13

Considerations .................................................................15
Cost  16

Culture  17

Caching  19

Auto Scale  20

Database  20

CDN  21

Third Party Integrations  21

Customizations  21

Conclusion ...................................................................... 22

Appendices ..................................................................... 24



3

Jeff Fischer is Chief Technology Officer and 

Board member at Broadleaf Commerce, 

responsible for Technological Development, 

Digital Innovation Strategy, Data Protection, 

and Executive oversight on Technology 

Implementations. Jeff has 25 years of 

experience across Digital Commerce, 

Software Engineering, and Technical 

Consulting. 

Meet the Author

in

JEFF FISCHER



44

Introduction
Broadleaf Commerce (Broadleaf) provides companies with a platform for building 

high performance commerce solutions. Based on best of breed open source 

technologies including the Spring Framework, Broadleaf was designed from the 

ground up to be extensible and scalable for businesses and institutions requiring 

a mission critical eCommerce solution.

With a robust microservices architecture, Broadleaf embraces the latest thought 

in software architecture principles and practice. Coupled with our innovations 

in advanced composable commerce, Broadleaf provides a forward-thinking 

architecture that can f it into any infrastructure budget.

This paper provides details of scalability tests performed with the Broadleaf 

Commerce Microservices reference implementation. Testing was completed 

using a range of node size combinations in a standard kubernetes cluster in the 

cloud. With the ability to easily scale to thousands of transactions per second 

across tens of thousands of concurrent users and millions of products, the test 

results speak for themselves.

Note, for details on configuration and test plan specif ics, refer to the appendices 

at the end of the document.



55

Simulating real-world shopping scenarios with
industry average conversion rates

Test Methodology

Section 1



6

Section 1:Test Methodology

How to read the charts in this study

For this paper, we have employed a naming scheme that combines application 

and infrastructure sizing into a shortened name for easy reference. Throughout this 

document, you will see chart references to items such as “BS3”, or “GL5”. Refer to the 

chart below to understand how these terms relate to application and infrastructure 

resources.



7

Section 1:Test Methodology

Simulating real-world scenarios when testing an e-commerce application is critical 

in determining not only how efficiently the software performs under normal 

circumstances, but also how many users it can serve during peak demand. While 

testing up to a 100% conversion rate to ensure performance on “Black Friday” and 

“Cyber Monday” behavior was accounted for, most test cases conducted an average 10% 

add-to-cart action and an aggregated 3% conversion rate. 

  

In all cases, Broadleaf set out to report objective scalability numbers. In isolation, test 

cases for “home page views” or “orders” have no merit outside of simulated consumer 

behavior. The ability for a system to handle hundreds of millions of views to a single 

page without any other variable is a useless statistic in itself. Furthermore, test cases 

with varying concurrent user numbers hold no value unless tested against concurrent 

user behavior. 

 

A test was considered “passing” if the Broadleaf framework generally responded to API 

calls with an average response time of 500 ms, or less. Furthermore, real world usage 

of microservice APIs often require several calls to fulfill a concept, such as rendering a 

product detail page. In these cases, we also measured the aggregate response time of 

all API calls involved to complete the overall user experience and confirmed the sum of 

timings was generally less than 1 second.

Finally, test cases were given a several minute warm up time followed by a 2 minute 

ramp-up period before experiencing peak load. Refer to Appendix C for more details on 

the approach.

Note on nomenclature - For this paper, we have employed a naming scheme that 

combines application and infrastructure sizing into a shortened name for easy 

reference. Throughout this document, you will see chart references to items such 

as “BS3”, or “GL5”. Refer to the chart below to understand how these terms relate to 

application and infrastructure resources.



88

Against high traffic, large product catalogs, and peak 
season spikes, Broadleaf Commerce proves the ability to 
handle the most stringent scalability requirements.

Test Results

Section 2



9

Section 2 : Test Results

1. Throughput
Peak demand is defined based on industry, customer base, and seasonality. Through 

all major peak eCommerce variables, Broadleaf proves the ability to scale. Across high 

transaction volume, concurrent users, large catalogs, and high conversion rates, Broadleaf 

exhibits consistent peak performance. 

For test purposes, Broadleaf focuses on throughput as it relates to completed 

transactions per second (TPS), and completed orders per second (OPS). A transaction in 

this context refers to an individual microservice API call to complete a unit of functionality 

as it relates to the overall ecommerce test plan. Refer to Appendix A for more details 

on the test plans used. By adding replicas of application microservices to a growing 

kubernetes cluster, we demonstrate fairly linear scale as we seek to increase throughput.

The initial test focuses on the classic heavy browse use case culminating in a 3% 

conversion rate to completed orders. Such a case involves significant user activity in the 

areas of search, catalog browsing, and registered customer login and account perusal. A 

10K product catalog is used in all cases, unless otherwise specified.

In this round of tests, the Balanced flexpackage throughput was examined through 

small, medium, and large infrastructure configurations, culminating in 3400 TPS for 

the system. The Granular flexpackage was also considered at the larger infrastructure 

sizes and performed comparably. Spoiler alert - for extreme scale, refer to the Conversion 

Rate results section, where we demonstrate scaling to 100 orders per second using 

conventional techniques alone.

Broadleaf Commerce 
proves vertical scalability 
across Transactions Per 
Second (TPS)



10

Section 2 : Test Results

Concurrent Users2.
In order to simulate concurrent users in a real world scenario, Broadleaf tested virtual 

users in gated test plans involving percentage advancement at various stages of the 

customer journey, coupled with quantity and catalog choice randomization. Then, 

calculating based on an ecommerce average of 1 page view perminute per user, we 

were able to estimate concurrent user capacities.

For companies needing to accommodate even more users (e.g., companies that want 

to be the next Amazon, Facebook, or Twitter), infrastructure build out and serious 

application performance tuning can be handled with Broadleaf’s Professional Services. 

For most businesses with typical conversion rates, the numbers demonstrated above 

can handle sites generating billions of dollars in sales.

Broadleaf Commerce 
proves vertical scalability 
across concurrent users



11

Section 2 : Test Results

Data Variations

Discount Test

100 BOGO offers were introduced into the system 
- all set to auto apply. This setting indicates that all 
offers are qualified against the cart contents at the 
time of add to cart, which is a key computational 
moment in the cart lifecycle. The effect was a little 
more noticeable in this case, but overall still not an 
unfavorable impact at any size tested.

Two different tests were run. First, 3 variants 
per product were introduced with a basic set of 
product options for the test to negotiate upon 
add to cart. When compared to normal execution 
(no variants), the impact was negligible, within a 
margin of error.

Variants Test

3.
While the 3% conversion rate test plan is interesting on its own, it is important to 

consider the impact of catalog complexity. In this round of tests, we introduce two 

factors: discounts and variants/options. Discounts can slow down cart manipulation 

as it introduces additional calculation required to price items in the cart. Variants (aka 

Skus) and product options also represent additional catalog complexity for the system 

to navigate as it addresses inventory and pricing concerns across a larger landscape of 

customer choice.

Checkout without Variants or Discounts

Broadleaf Commerce 
proves vertical scalability 
across product variations 
and discount testing



12

Section 2 : Test Results

Catalog Size4.

This test focuses on the order life cycle 

journey using a test plan starting with the 

product detail page and ending in cart 

checkout. This test plan is similar to the 

100% conversion rate test plan detailed later 

in this document. 

Again, we see a negligible impact to 

performance based on catalog size across 

all infrastructure combinations.

For corporations requiring larger catalog 

sets, Broadleaf tested an online catalog with 

100,000 and 1,000,000 products. 

Broadleaf Commerce 
demonstrated the
ability to handle wide 
variations in catalog 
size with negligible 
impact.



13

Section 2 : Test Results

Conversion Rates5.
For corporations with increased conversion 

rates above industry averages, Broadleaf 

tested up to 100% conversion. The key 

metric captured for this test is orders per 

second (OPS).

At the highest tier tested (BL5) using 

a heavy browse test plan (similar to 

the standard 3% conversion test plan), 

Broadleaf demonstrated a volume of 

13.83 OPS at a 50% conversion rate. This 

translates into about 50K order per hour. 

This type of traffic may be common for 

some retailers during Black Friday style  

shopping scenarios. 

Given an industry standard average order value (AOV) of 
$128, Broadleaf Commerce can comfortably support billions in 
revenue on a reasonable hardware budget.



14

Section 2 : Test Results

Checkout focused results are often requested as well. This type of 

test plan lightens the browse requirements, and instead opts for 

an order focused journey. This solely considers the product detail 

page, and beyond to checkout and order completion - at 100% 

conversion rate. This type of flow is common with highly targeted 

product offerings, usually with a small product count.

We were able to demonstrate the extreme case of 100 OPS using 

conventional horizontal scale techniques. For this high end case, 

we utilized a cluster composed of (6) 16 core nodes, (8) 8 core 

nodes, and (4) 4 core nodes. We also employed a 16 core cloud 

native database as the backing datastore.

Refer to Appendix A for more detailed information on this test 

plan.

Broadleaf Commerce demonstrated the 
ability to scale to an extreme 100 OPS 
using conventional horizontal scale.



1515

There are plenty of options that can assist with 
achieving a Broadleaf installation that is optimized
for performance and cost.

Considerations

Section 3



16

Section 3 : Considerations

Cost
Infrastructure cost is a major consideration when determining the right platform 

to leverage for your eCommerce solution. The right balance of infrastructure spend 

weighed against throughput and revenue expectations is important to estimate 

carefully ahead of time. To further complicate the issue, modern architecture best 

practices call for a microservice approach, which affords many benefits, but tends to 

come at a higher infrastructure cost to support the granular service count.

Broadleaf understands these challenges and has come up with an innovative approach 

to address these issues, without inhibiting future growth. Broadleaf has introduced an 

infrastructure composability concept entitled FlexPackages.

A FlexPackage is a unit of composition that conserves 
all of the basic plumbing and components that make 
up the base of the microservice platform. 

Configured on top are the unique components and API that inhabit individual, granular 

microservices. By putting multiple microservices together into a single FlexPackage, 

you can conserve greatly on the complexity and quantity of infrastructure needed 

to support the stack, while at the same time completely honoring bounded context 

restrictions and design boundaries. The persistence tier is still isolated per microservice, 

and the endpoint APIs and asynchronous messaging tier are solely used for inter-

service communication.

Broadleaf currently ships in the neighborhood of 25 granular microservices. However, 

we also expose configuration for the “Balanced” flexpackage that combines these 

microservices into 4 primary components: Cart, Browse, Supporting, and Processing. 

Doing so, we are able to comfortably realize smaller infrastructure deployments that 

would not be feasible with that many individual microservices. And, via configuration 

alone, the microservices can be combined into other combinations, or broken apart 

completely into the original, granular representations. This is a powerful feature 

allowing you to model your infrastructure to match your revenue growth, or IT culture.



17

Section 3 : Considerations

We call this Advanced Composable Commerce, as the 
FlexPackage allows you to model multiple vectors of 
composability.

With microservices, you can choose the features and functions that make sense for 

your business. With FlexPackages, you can extend that flexibility into the infrastructure 

domain.

You can also consider savings across multiple environments. For example, with the 

same codebase, you can package differently for dev, qa, and prod. The possibilities are 

limitless.

Refer to Appendix D for more information on the default FlexPackages used, and the 

components they contain.

Culture
IT Culture is another factor, in addition to cost, that can influence decisions regarding 

FlexPackage choice. Team structures that honor traditional microservice isolation 

boundaries are likely to favor the most granular representation of each microservice. 

This type of team tends to operate in a silo and often ships code with a higher 

frequency - shortening overall time to value. On the other hand, multi-discipline teams 

may choose to cover multiple bounded contexts and favor shipping less often, or with 

reduced devops complexity, by reducing microservice count through FlexPackage 

composition.

There are pros and cons with both extremes, and there are a spectrum of levels 

between.

The reality is that IT culture doesn’t always match up 
nicely with technical innovation, and the FlexPackage 
concept can help soften the devops transition. 

If organizations choose to adopt more devops complexity, the FlexPackage pattern can 

help with that transition without requiring code refactoring.



18

Section 3 : Considerations

Caching
Broadleaf leverages the Spring Cache abstraction in key flows for performance benefit. 

The out-of-the-box implementation we employ leverages Apache Ignite. By using 

Ignite, we get the benefit of a robust cache architecture, including its features around 

off-heap cache. By storing cache members off-heap, the burden on the JVM to garbage 

collect frequent evictions is removed. This benefits the overall GC posture of the 

application and further stabilizes performance.

With default settings, we find that Ignite allocates immediately 256 MB of off-heap 

memory as a bucket for cache. During our testing, with the caches we provide out-of-

the-box, we never exceeded that initial bucket. In fact, we routinely only used about 64 

MB of it. Note that each microservice runtime with cache enabled will allocate off-heap 

memory in this way. While small, this should be accounted for when considering pod 

scheduling and node capacity.

By default, we configure a basic TTL cache in a non-distributed configuration. This 

means that each microservice instance maintains its own copy of cache. This is the 

least blocking configuration and is something we generally favor for performance, at 

the cost of a delay in eviction in most cases. Ignite is flexible and is designed to be used 

as a distributed cache if needed. If more real time consistency is required, the cache can 

be configured in this manner, possibly at some throughput cost.



19

Section 3 : Considerations

Auto Scale
Auto scale can be an effective mechanism for meeting occasional demand increase 

without keeping peak infrastructure available 24/7. 

By automatically scaling to need, you can decrease 
overall cost without sacrificing customer experience.

Kubernetes provides auto scale features at both the pod and node level. As pod 

utilization meets configured thresholds, kubernetes can spawn new replicas to absorb 

the increase in demand. Furthermore, as pod count exceeds capacity, kubernetes can 

spawn additional nodes in the current node pool to create additional capacity for the 

pod increase. If enabled, kubernetes will continue to do so until it reaches its configured 

limit. This configuration is enabled at the point where the infrastructure is provisioned. 

If using Terraform as we did, it is a setting for the resources in the Terraform template 

file.

There are several factors to consider for auto scale. Broadleaf leverages Java and 

Spring. There is a startup time cost from initial application launch to the time when the 

application is ready to receive connections. Compound that with the time kubernetes 

requires to spawn a new pod. Further compound that with the time kubernetes 

requires to spawn a new node (this latter point is the most costly of the three). A new 

node is not always required if there is already enough capacity to handle the new pod 

Further compound that with the time kubernetes requires to spawn a new node (this 

latter point is the most costly of the three). A new node is not always required if there 

is already enough capacity to handle the new pod. Nonetheless, there is a real time-

to-effectivity cost that must be taken into account when considering auto scale. You 

should not expect instant availability.



20

Section 3 : Considerations

There are a number of best practices for configuring the kubernetes cluster autoscaler, 

horizontal pod autoscaler, and vertical pod autoscaler that can be found online. I won’t 

detail them all here. However, it is useful to consider demand scenarios and autoscale 

expectations. If you have ebb and flow of fairly gradual demand, the system will still 

provide acceptable customer experience under increased demand during the period 

in which the auto scale process is enacted. If you experience incredible spikes in traffic, 

you may outpace the scale-up timeline. In such a case, you should maintain additional 

hot resources to accommodate the spike, or pre-emptively scale up for a temporary 

timeframe if the spike can be predicted.

Database
The tests performed in this paper were all executed against a Postgres database 

(specifically a Google Cloud SQL instance provisioned outside the kubernetes 

cluster). While Broadleaf also  supports Mysql, MariaDB, and Oracle, our reference 

implementation leverages Postgres.

We found the cloud sql implementation to be highly efficient, roughly equivalent to 

a similar database installed directly in the cluster. We also found Broadleaf’s usage 

of database resources to be highly efficient, contributing to an overall performance 

benefit. In general, the connection pool configured for the application was set to a 

count of 10. The only exception was the 100 OPS test, which used a connection pool size 

of 20. During test monitoring, we never found the active usage to exceed that threshold, 

with little or no blocking at acquisition.

We also found that database vertical scale requirements were minimal as the 

application itself scaled. Most of the test cases required only an 8 or less CPU instance 

for the database. The exception was the 100 OPS extreme test, which used a 16 core 

instance. However, at that scale, that is a very acceptable sizing.

For tuning the database itself, throughput levers for 
cloud native instances tend to be governed by sizing. 
Factors such as storage size, CPU count, and RAM can 
affect disk IO quota, network throughput, and max 
connection count, respectively.



21

Section 3 : Considerations

CDN
The load test did not retrieve graphics or other static assets from the application 

container, nor did it engage the built-in asset server for any managed asset retrieval. 

Most high volume sites will benefit from having static assets delivered to users via a 

CDN (Content Delivery Network). CDN solutions offer hi-speed nodes located across the 

globe with delivery of your assets coming from the nodes closest to a given user. This 

serves to reduce response times for your application and lessens unnecessary load on 

your application container.

Third Party Integrations
Typical enterprise eCommerce systems can contain ten or more integrations. Each 

integration has the potential to negatively affect the scalability of the system. It is 

important to use best practices for integrating with other systems to ensure that one 

poorly performing third party integration does not bring down the entire system.

Tuning strategies, including cache and circuit-breaker 
patterns, can help to avoid hotspots and maintain 
acceptable customer experience.

Customizations
The load tests reported in this paper were performed against a reference 

implementation of the Broadleaf Microservice Framework. As such, there was no 

custom code included in the test outside of what Broadleaf itself provides. Client 

implementations built on top of the Broadleaf Framework will necessarily include 

additional customizations, libraries, and integrations that can possibly contribute to 

performance degradation. For this reason, each new implementation should itself go 

through a load test analysis to qualify it as meeting performance expectations. Should 

you need it, Broadleaf provides professional services to help with performance tuning 

your implementation.



2222

The Broadleaf Commerce framework scales across
all testing metrics to meet the needs of even the most 
demanding eCommerce sites.

Conclusion

Section 4



23

Section 4 : Conclusion

Well known retailers and businesses depend on Broadleaf Commerce to power their 

eCommerce solutions, as Broadleaf provides best-in-class eCommerce capabilities at 

the highest value.

Broadleaf proved real business use cases across multiple scenarios, demonstrating:

•  Thousands of transactions per second
•  Tens of thousands of concurrent users
•  Millions of products
•  Billions of dollars worth of sales

Furthermore, the provided test results demonstrate that Broadleaf Commerce scales 

horizontally by adding additional microservice instances. This type of scaling is ideal for 

cloud based environments, especially those leveraging kubernetes.

Finally, the results demonstrate that Broadleaf’s FlexPackage technology enables 

deployment of a large microservice architecture on a hardware footprint that can fit 

into any budget.

For more information on Broadleaf, please visit: www.broadleafcommerce.com 



2424

Appendices



25

Appendix

Appendix A - Test Plan



26

Appendix

Appendix B - Throughput Reference



27

Appendix

Appendix B - Throughput Reference



28

Appendix

We use a custom JMeter rigging exposed via a web-interface delivered by a Spring 

Boot application. The rigging is deployed in a specific test node pool that is maintained 

separately from the main application node pool. In some circumstances, multiple 

node pools were used for the application pods. This latter case occurred when it was 

advantageous to segregate pods by type (e.g. a node pool dedicated to replicas of the 

Browse type). The primary vehicle for attaining this level of separation was to utilize 

node tainting and toleration configurations to force scheduling segregation.

To minimize cost, Terraform was configured to provision preemptible nodes. Helm 

Charts were used to deploy the application and support components to the kubernetes 

cluster. Shell scripts were used to interact with Terraform and Helm to automate the 

construction, installation, uninstallation, and destruction of the cluster. The overall goal 

was to minimize cluster uptime to reduce expense.

Monitoring system health at all levels was important during test runs. Distributed 

systems are complex with many moving parts, each contributing to system health and 

performance. We leveraged separate Grafana dashboards for JMeter (Figure 1) results 

and system health (Figure 2). Visualizations in both dashboards can evidence system 

stress and are useful for determination of where to scale resources and/or capacity. 

The system health dashboard is the same standard dashboard that ships with the 

framework.

Appendix C - Approach



29

Appendix

Appendix C - Approach

Figure 1 - JMeter Dashboard



30

Appendix

Appendix C - Approach

Figure 2 - System Health Dashboard



31

Appendix

Core Components

•  Microservices - Provides the core application functionality

•  Auth - Provides OAuth related security functionality

•  Gateway - Proxy exposed to the client and routes traffic to a microservice

•  Database - Data persistence layer for the application

•  Kafka - Messaging broker for the application

•  Solr - Search services for the application

•  Zookeeper - Distributed synchronization for Solr and Kafka

•  EFK Stack - APM and centralized log management

•  Prometheus - Time series database for system health metrics

•  Grafana - System health telemetry

Testing Components

•  JMeter - Distributed load test client

•  InfluxDB - Time series database for load test results - See Figure 3 for deployment   

                       diagram

Granular Microservices

Asset, Catalog, Campaign, Offer, Pricing, Vendor, Catalog Browse, Menu, Personalization, 

Inventory, Cart, Order, Customer, Cart Operations, Order Operations, Import, Scheduled 

Job, Admin Navigation, Admin User, Sandbox, Metadata, Tenant, Notification, Search, 

Indexer

Appendix D - Components



32

Appendix

Appendix D - Components



33

Appendix

Appendix D - Components



34

Appendix

Appendix E - Sample Kubernetes Deployment Plans



35

Appendix

It’s worthy to note the kubernetes scheduler on its own does a fair job of organizing 

pods based on the defined resource requests. However, often you will require 

more control over how pods are scheduled. Kubernetes provides several advanced 

configuration mechanisms that should definitely be included in your toolbelt when 

designing a deployment for your cluster. Specifically, node tainting, toleration, and 

affinity configurations are invaluable to customizing the deployment to achieve the 

most efficient and performant installation. We made extensive use of these features 

during the testing performed in this paper.

If your scale requirements are large enough, it will begin to make sense to segregate 

pods by type into different node pools. This type of configuration is most clearly 

evidenced in our BL6-M8-S4 configuration that was used to achieve 100 OPS.

The performance of the system will be most sensitive to adjustments in CPU core 

request configuration. The system performs well at smaller sizes for smaller throughput 

requirements. However, the most efficient sizing when using the balanced FlexPackage 

utilizes cart pod replicas sized at 3000m and browse pod replicas sized at 2000m. 

Consider these sizes as you explore larger nodes and you have more opportunity to 

request larger CPU allocations.

When starting a load test, it can be advantageous to use liberal node size and not 

define pod resource constraints. Then, run load and review kubectl top pod results to 

see where resources are naturally allocated. Armed with that information as a guideline, 

setup pod resource requests and limits for future test runs. Add replica count until you 

reach your throughput goals. Such an approach can take out some of the guesswork 

when starting to design a load test.

Appendix F - Technical Recommendations



36

Built with the future in mind, Broadleaf Commerce is an enterprise software provider 

with a proven track record of solving complex commerce challenges. Our API-first 

approach, and cloud-native microservice architecture gives you the control, flexibility, 

and performance to innovate quicker and achieve time to value faster.

As the market-leading choice for enterprise organizations requiring tailored, highly 

scalable commerce systems, we deliver a modular platform that embraces an open 

philosophy with an extensible and intuitive administrative console.

Broadleaf Commerce was founded in 2009. Over the years, we have earned the trust 

of leading brands like - O’Reilly Auto Parts, Major League Baseball, ICON Fitness, and 

Telefonica.

About Broadleaf

broadleafcommerce.com


